2023-24 MATH2048: Honours Linear Algebra II Homework 7

Due: 2023-11-06 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Definitions. Two linear operators T and U on a finite-dimensional vector space V are called simultaneously diagonalizable if there exists an ordered basis β for V such that both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Similarly, $A, B \in M_{n \times n}(F)$ are called simultaneously diagonalizable if there exists an invertible matrix $Q \in$ $M_{n \times n}(F)$ such that both $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal matrices.
(a) Prove that if T and U are simultaneously diagonalizable linear operators on a finite-dimensional vector space V, then the matrices $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable for any ordered basis β.
(b) Prove that if A and B are simultaneously diagonalizable matrices, then L_{A} and L_{B} are simultaneously diagonalizable linear operators.
2. (a) Prove that if T and U are simultaneously diagonalizable operators, then T and U commute (i.e., $T U=U T$).
(b) Show that if A and B are simultaneously diagonalizable matrices, then A and B commute.
3. Let T be a linear operator on a finite-dimensional vector space V, and suppose that the distinct eigenvalues of T are $\lambda_{1}, \ldots, \lambda_{k}$. Prove that

$$
\operatorname{span}(\{x \in V: x \text { is an eigenvector of } T\})=E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus \cdots E_{\lambda_{k}} .
$$

4. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v.
(a) For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial $g(t)$ such that $w=g(T)(v)$.
(b) Prove that the polynomial $g(t)$ in (a) can always be chosen so that its degree is less than or equal to $\operatorname{dim}(W)$.
5. Let A be an $n \times n$ matrix. Prove that $\operatorname{dim}\left(\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq n$.

The following are extra recommended exercises not included in homework.

1. Let T be a diagonalizable linear operator on a finite-dimensional vector space V over F, and let $f, g \in P(F)$. Prove that $f(T)$ and $g(T)$ are simultaneously diagonalizable.
2. Let T be a linear operator on a vector space V, and let W be a T-invariant subspace of V. Prove that W is $g(T)$-invariant for any polynomial $g(t)$.
3. Let T be a linear operator on a vector space V. Prove that the intersection of any collection of T-invariant subspaces of V is a T-invariant subspace of V.
4. Let T be a linear operator on a finite-dimensional vector space V.
(a) Prove that if the characteristic polynomial of T splits, then so does the characteristic polynomial of the restriction of T to any T-invariant subspace of V .
(b) Deduce that if the characteristic polynomial of T splits, then any nontrivial T-invariant subspace of V contains an eigenvector of T.
5. Use the Cayley-Hamilton theorem to prove its corollary for matrices.
6. Let T be a linear operator on a vector space V, and suppose that V is a T-cyclic subspace of itself. Prove that if U is a linear operator on V, then $U T=T U$ if and only if $U=g(T)$ for some polynomial $g(t)$.
